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Abstract

In all cases in the nonparametric auction literature it is assumed that
the value distribution has known bounded support. In this paper we
show via an alternative nonparametric identification proof that this
assumption is superfluous, provided that the value distribution has
a finite expectation. In first instance we show this for the case of
repeated identical first price auctions, and then we extend the proof
to the case of first price auctions with observed auction-specific het-
erogeneity. Also, we consider the case where the log of the values is
modeled as a median regression model, and the case where the bidders
know ex-ante the actual number of bidders rather than the number of
potential bidders.
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1 Introduction
In this paper we show the nonparametric identification of first-price sealed
bid auction models under mild conditions, where the values of the poten-
tial bidders are independent and private and bidders are ex-ante identical,
possibly conditional on observed auction specific covariates. This is known
as the Independent Private Values (IPV) paradigm. Moreover, we assume
risk neutrality. Furthermore, we assume that after the auction the bids are
unsealed, and are therefore ex-post observable. In the sequel we call this
type of auctions shortly ”first-price auctions”. Three situations will be in-
vestigated in the paper. The first one is the (not very realistic) case where
identical auctions are repeated independently with the same known number
of potential bidders. The second is the more realistic case where auction-
specific characteristics are observed and the number of potential bidders and
the reservation price are allowed to change. The third is the case where the
reservation price is binding and the bidders know ex-ante the actual number
of bidders rather than the number of potential bidders.
As to the literature, there are two seminal papers on the identification of

first-price auction models, namely Donald and Paarsch (1996) and Guerre,
Perrigne and Vuong (2000). Of course, parametric identification has been
developed earlier. In particular, Laffont, Ossard and Vuong (1995) specify
the conditional distribution of the log of the private values as normal with
conditional mean a linear function of covariates.
Donald and Paarsch (1996) show the nonparametric identification of first-

price auctions under the assumption that the support of the distribution
F (v) of the values is a known bounded interval (v, v), i.e., F (v) is absolutely
continuous with density f such that f(v) > 0 on (v, v), and F (v) = 0,
F (v) = 1. 1 Given the well-known equilibrium bid function of first-price
auctions without binding reservation price (see for example Krishna 2002),

b = β (v) = v − 1

F (v)I−1

Z v

v
F (x)I−1dx, (1)

where I is the number of potential bidders, this assumption implies that also
the bid distribution is bounded, with lower bound b = β (v) = v and upper
bound b = β (v) .

1More generally, they use the family of Hara utility functions to model non-neutral
risk.
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Guerre, Perrigne and Vuong (2000) make the same assumption about
the value distribution. However, unlike Donald and Paarsch (1996), these
authors use the inverse bid function

v = β−1(b) = b+
1

I − 1
Λ(b)

λ(b)

where Λ(b) is the distribution function of the bids, λ(b) is the corresponding
density, and I is the number of potential bidders. Since the bids are observ-
able, the bids distribution Λ(b) and its density λ(b) may be considered given,
because they can be estimated nonparametrically. Therefore, the private
values can uniquely be recovered from the bids and their distribution.
The nonparametric approach of Guerre, Perrigne and Vuong (2000) has

been extended by Athey and Haile (2002, 2006a-b) to more general auction
models. See Milgrom and Weber (1982) for the latter. Li, Perrigne and
Vuong (2000) have extended the nonparametric approach to the conditionally
independent private value (CIPV) model, under the assumption that each
private value is the product of an idiosyncratic component and a common
component. Li and Perrigne (2003) study first-price auctions with random
reservation price and show the nonparametric identification of this model.
Campo et al. (2002) consider the case of risk averse bidders.
In all cases in the nonparametric auction literature it is assumed that

the value distribution has known bounded support. In this paper we show
via an alternative nonparametric identification proof that this assumption is
superfluous, provided that the value distribution has a finite expectation. In
first instance we show this, in Section 2, for the case of repeated identical first
price auctions, and then we extend the proof in Section 3 to the case of first
price auctions with observed auction-specific heterogeneity. Also, we consider
the case where the log of the values is modeled as a median regression model
The standard assumption of first-price auction models is that the num-

ber of potential bidders is ex-ante known to the bidders and ex-post to the
econometrician as well. The latter is often not the case in practice if the
reservation price is binding. Therefore, in Section 4 we consider the case
where the bidders know ex-ante the actual number of bidders, i.e., the num-
ber of bidders with a value larger than the reservation price, rather than the
number of potential bidders. Finally, in Section 5 we will sketch how we plan
to use these results in our further research on semi-nonparametric estimation
of the (conditional) value distribution of first-price auctions.
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2 Repeated identical first-price auctions
The case where a first-price auction is repeated identically is of limited prac-
tical interest, but we will consider this case here to illustrate the main ideas
behind our alternative identification proof. The more realistic case of first-
price auctions with auction-specific observed heterogeneity will be considered
in the next section.

2.1 The bid function

Suppose there are I ex-ante identical bidders and there is an indivisible object
to sell. Assume that bidders are risk-neutral. Bidders’ values are assumed to
be independent and private. Moreover, the bidders’ values V follow a distri-
bution F (v). Then, given the seller’s reservation price p0 which is announced
in advance, the equilibrium bid of a bidder with value v is2

β(v) = v − 1

F (v)I−1

Z v

max(p0,v)
F (x)I−1dx, v > max(p0, v), (2)

where I is the number of potential bidders, which is assumed to be known,
and

v = inf
F (v)>0

v (3)

is the lower bound of the support of the private values distribution F . See
Riley and Samuelson (1981) or Krishna (2002) for the derivation of (2).
We do not restrict v to be positive valued, nor do we assume that v is

known. If v > 0 and the seller sets the reserve price p0 below v, so that p0 is
non-binding, or if there is no reservation price (p0 = 0), every potential bidder
will enter the auction. This case is observable because then the number of
bids equals the number I of potential bidders.
On the other hand, if the reservation price p0 is binding, p0 > v, only

potential bidders with value V > p0 will enter the auction and make their
bids. This case is observable because then the actual number if bids, I∗, is
less than the number I of potential bidders.
Note that in the case of a binding reservation price p0, (2) can be written

as

β (v) = v − v − p0
F (v)I−1

+
1

F (v)I−1

Z v

p0

³
1− F (x)I−1

´
dx

2See the Appendix for the derivation of the similar expression (16).
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=
vF (v)I−1 − v + p0

F (v)I−1
+

1

F (v)I−1

Z v

p0

³
1− F (x)I−1

´
dx

=
p0

F (v)I−1
+

R v
p0

³
1− F (x)I−1

´
dx− v

³
1− F (v)I−1

´
F (v)I−1

=

R v
p0

³
1− F (x)I−1 − d

dx

³
x
³
1− F (x)I−1

´´´
dx

F (v)I−1

+
p0 − p0(1− F (p0))I−1

F (v)I−1

= (I − 1)
R v
p0
xF (x)I−2F 0(x)dx
F (v)I−1

+ p0
F (p0)

I−1

F (v)I−1
.

Consequently,

lim
v→∞ β (v) = (I − 1)

Z ∞
p0
xF (x)I−2F 0(x)dx+ p0F (p0)I−1 <∞ (4)

if and only if

Assumption 1. The value distribution has a finite expected value: E[V ] <
∞.

The importance of (4) is that then the expected revenue of the seller,R∞
p0

β (v)F 0(v)dv, is then finite too.

2.2 Non-binding reservation price

In an auction with a non-binding reservation price, we may without loss of
generality assume that the seller sets p0 = 0 so that the bid function (2)
becomes (1). The problem is that this bid function depends on v, which is
unknown. However, if we replace the nonrandom argument v in (1) with a
random drawing V from F (v) we do not need to bother about v, because
then

β (V ) = V − 1

F (V )I−1

Z V

v
F (x)I−1dx = V − 1

F (V )I−1

Z V

0
F (x)I−1dx

a.s.3, due to the fact P [V > v] = 1 and thus P [F (V ) > 0] = 1

3a.s. stands for almost surely, or equivalently, with probability 1.
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Now suppose that there exist two distinct value distribution F∗ (v) dif-
ferent from F (v) such that, with V a random drawing from F (v) and V∗ a
random drawing from F∗ (v) , such that

β∗(V∗) = V∗ − 1

F∗(V∗)I−1

Z V∗

0
F∗(x)I−1dx

has the same distribution as β (V ). In other words, F (v) and F∗ (v) are
observationally equivalent (see Roehrig 1988). We will show that if F (v)
and F∗ (v) are observationally equivalent then they are identical: F (v) =
F∗ (v) on (0,∞), provided that both distributions are absolutely continuous
with connected support:

Assumption 2. In a first-price sealed bid auction, the value distribution is
confined to the class Faccs of absolutely continuous distributions with con-
nected supports.

Connectedness of the support of F (v) means that the support {v ∈ (0,∞) :
F 0(v) > 0} takes the form of an interval.
Note that we do not assume that the supports of F (v) and F∗ (v) are

equal, but only that they are connected.
The main reason for this assumption is the following well-known result,

which follows trivially from the fact that each F is strictly monotonic and
therefore invertible on its support.

Lemma 1. Let V be a random drawing from an absolutely continuous dis-
tribution F with connected support . Then U = F (V ) has a uniform [0, 1]
distribution, and there exists an inverse function F−1 on [0, 1] such that
V = F−1 (U) a.s.

Under Assumption 2 it follows from Lemma 1 that U = F (V ) and U∗ =
F∗ (V∗) are uniformly [0, 1] distributed, so that

B = ϕ (U) = F−1 (U)− 1

U I−1

Z F−1(U1)

0
F (x)I−1dx

and

B∗ = ϕ∗ (U∗) = F−1∗ (U∗)− 1

U I−1∗

Z F−1∗ (U∗)

0
F∗(x)I−1dx
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have the same distribution:

P [B ≤ b] = P [B∗ ≤ b] = Λ (b) , (5)

say.
Since ϕ(u) is monotonic increasing and therefore invertible on (0, 1), it

follows from (5) that for all b in the support of Λ (b) ,

ϕ−11 (b) = P [U1 ≤ ϕ−11 (b)] = P [ϕ1(U1) ≤ b]
= P [B ≤ b] = P [B∗ ≤ b]
= P [ϕ∗(U∗) ≤ b] = P [U∗ ≤ ϕ−1∗ (b)] = ϕ−1∗ (b).

Hence, ϕ1(u) = ϕ2(u) a.e.4 on (0, 1) and thus by continuity,

F−1 (u)− 1

uI−1

Z F−1(u)

0
F (x)I−1dx = ϕ(u)

= ϕ∗(u) = F−1∗ (u)− 1

uI−1

Z F−1∗ (u)

0
F∗(x)I−1dx

exactly on (0, 1). Multiplying both sides of this equation by uI−1 yields

uI−1F−1 (u)−
Z F−1(u)

0
F (x)I−1dx = uI−1F−1∗ (u)−

Z F−1∗ (u)

0
F∗(x)I−1dx

and then taking the derivative to u ∈ (0, 1) yields

(I − 1)uI−2F−1(u) + uI−1dF
−1(u)
du

− (F (F−1(u)))I−1dF
−1(u)
du

= (I − 1)uI−2F−1∗ (u) + uI−1
dF−1∗ (u)
du

− (F∗(F−1∗ (u)))I−1
dF−1∗ (u)

du
,

so that F−1(u) = F−1∗ (u) for all u ∈ (0, 1). Consequently, F (v) and F∗(v) are
equal on a common support and therefore F (v) = F∗(v) on [0,∞).

2.3 Binding reservation price

In the binding reservation price case some bidders’ values are above p0 while
some bidders’ values are below p0. The former bidders submit their bids
according to the equilibrium bid function

β(v) = v − 1

F (v)I−1

Z v

p0
F (x)I−1dx, v > p0, (6)

4a.e. stands for almost everywhere, which means that the property holds except perhaps
on a set with zero Lebesgue measure.
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whereas the latter bidders do not submit the bid. In the latter case we
may assume without loss of generality that these potential bidders submit
zero bids. After the auction, the econometrician can observe the number
actual bids, I∗, and the number I − I∗ of zero bids. The number I − I∗ has
a Bin(I, F (p0)) distribution, hence E [(I − I∗) /I] = F (p0) . In L repeated
identical auctions, where for each action ` the actual number of bidders is I∗` ,
F (p0) can be estimated consistently by (1/L)

PL
j=1 (I − I∗` ) /I. Therefore,

α = F (p0)

is nonparametrically identified and may be taken as given.
Now consider the conditional distribution

F (v) = P [V ≤ v|V > p0] = P [p0 < V ≤ v]
P [V > p0]

(7)

=
F (v)− F (p0)
1− F (p0) =

F (v)− α

1− α
if v ≥ p0,

F (v) = 0 if v < p0.

Then
F (v) = α+ (1− α)F (v). (8)

Substituting (8) in (6) yields

β(v) = F−1 (α+ (1− α)F (v))− 1

(α+ (1− α)F (v))I−1

×
Z F−1(α+(1−α)F (v))

p0
(α+ (1− α)F (x))I−1 dx, v > p0.

Given that F satisfies Assumption 2, it follows that F also satisfies the
conditions in Assumption 2, hence F is invertible on its support, with inverse
denoted by F−1 (.) . It follows therefore from Lemma 1 that for a random
drawing V from F , U = F (V ) has a uniform [0, 1] distribution, and hence
the bids B, including the zero bids, are distributed according to

B ∼
Ã
F−1 (α+ (1− α)U)− 1

(α+ (1− α)U)I−1
(9)

×
Z F−1(α+(1−α)U)

p0
(α+ (1− α)F (x))I−1 dx

!
.D
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where U is distributed uniform [0, 1], and

D = 1 (V > p0) , V ∼ F (v) (10)

where 1 (.) is the indicator function5, with distribution P [D = 0] = α, P [D =
1] = 1− α. Since U was actually drawn conditionally on the event V > p0,
it follows that U and D are independent.
Suppose there exists a distribution F∗ (v) with F∗ (p0) = α and corre-

sponding conditional distribution function

F ∗(v) =
F∗ (v)− α

1− α
if v ≥ p0, F ∗(v) = 0 if v < p0

such that

B ∼
Ã
F−1∗ (α+ (1− α)U∗)− 1

(α+ (1− α)U∗)
I−1 (11)

×
Z F−1∗ (α+(1−α)U∗)

p0
(α+ (1− α)F ∗(x))

I−1 dx

!
.D∗,

where U∗ is uniformly [0, 1] distributed, and D∗ = 1 (V > p0) , V ∼ F∗(v),
with the same distribution as (10). Again, U∗ and D∗ are independent. Since
D and D∗ have the same distribution, it suffices to compare the right-hand
sides of (9) and (11) conditional on D = 1 and D∗ = 1, respectively. Then
similar to the non-binding reservation price case we must have that for all
u ∈ (0, 1) ,

F−1 (α+ (1− α) u)

− 1

(α+ (1− α) u)I−1

Z F−1(α+(1−α)u)

p0
(α+ (1− α)F (x))I−1 dx

= F−1∗ (α+ (1− α)u)

− 1

(α+ (1− α) u)I−1

Z F−1∗ (α+(1−α)u)

p0
(α+ (1− α)F ∗(x))

I−1 dx,

hence, by change of variables, for all u ∈ (α, 1) ,

uI−1F−1 (u)−
Z F−1(u)

p0
(α+ (1− α)F (x))I−1 dx

= uI−1F−1∗ (u)−
Z F−1∗ (u)

p0
(α+ (1− α)F ∗(x))

I−1 dx .

51 (true) = 1, 1 (false) = 0.
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Taking the derivative to u ∈ (α, 1) it follows that

(I − 1)uI−2F−1 (u) + uI−1dF
−1 (u)
du

−
³
α+ (1− α)F

³
F−1 (u)

´´I−1 dF−1 (u)
du

= (I − 1) uI−2F−1∗ (u) + uI−1
dF−1∗ (u)

du

−
³
α+ (1− α)F ∗

³
F−1∗ (u)

´´I−1 dF−1∗ (u)

du
,

hence F−1 (u) = F−1∗ (u) on (α, 1) and thus F (v) = F∗(v) on [p0,∞).

3 First-price auctions with observed auction-
specific heterogeneity

Let X be the vector of auction-specific characteristics for an auctioned item,
with support SX. The number of potential bidders of an auction with char-
acteristics X = x ∈ SX is a known function I(x) of x, but we maintain the
assumption that ex-ante I(x) is known to the potential bidders and ex-post to
the econometrician. The same applies to the reservation price p0(x). The con-
ditional value distribution in each auction with characteristics X = x ∈ SX
is denoted by

F (v|x) = P [V ≤ v|X = x] ,

which is known to each potential bidder. The values themselves are indepen-
dent within and across auctions, conditional on X.
Since the nonbinding reservation price case follows directly from the bind-

ing case by setting p0 = 0, we will focus only on the binding reservation price
case. In that case the conditional equilibrium bid function for the actual bids
is

β (v|X) = v − 1

F (v|X)I(X)−1
Z v

p0(X)
F (y|X)I(X)−1dy, v > p0 (X) .

Note that Assumption 1 implies that E[V |X] < ∞ a.s., so that under
Assumption 1, limv→∞ β (v|X) <∞ a.s.
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3.1 Nonparametric identification

In each auction with characteristics X and reservation price p0(X) the num-
ber of potential bidders I(X) minus the number of actual bidders I∗(X) has
a conditional Bin(I(X), F (p0(X)|X)) distribution, hence

E

"
I(X)− I∗(X)

I(X)

¯̄̄̄
¯X

#
= F (p0(X)|X)

which can be consistently estimated by nonparametric kernel regression,
given a random sample of auctions. Therefore,

α (X) = F (p0(X)|X)
is nonparametrically identified and may be taken as given. Interpreting the
non-bids as zero bids, the bids in this auction are distributed as

B ∼
Ã
V − 1

F (V |X)I(X)−1
Z V

p0(X)
F (y|X)I(X)−1dy

!
1 (V > p0 (X)) ,

where 1 (.) is the indicator function.
Similar to (7), let

F (v|X) = F (v|X)− α (x)

1− α (x)
if v ≥ p0 (X) , F (v|X) = 0 if v < p0 (X)

so that
F (v|X) = α (X) + (1− α (X))F (v|X). (12)

Moreover, let V be a random drawing from F (v|X), conditional on X, and
let U = F (V |X). In order to conclude that U has a uniform [0, 1] distribution
we need to generalize that Assumption 2 to:

Assumption 3. In a first-price sealed bid auction with auction-specific co-
variates X, the conditional value distribution given X is confined to the class
Faccs (X) of absolutely continuous conditional distributions with connected
supports.

Note that in this case the endpoints of the support may be (Borel measurable)
functions of X.
Now Lemma 1 can be generalized to:
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Lemma 2. Conditional on X, let V be a random drawing from a conditional
distribution F (.|X) ∈ Faccs (X) . Then U = F (V |X) has a uniform [0, 1]
distribution, and U and X are independent. Moreover, for each point x in
the support of X there exists an inverse function F−1(.|x) on [0, 1] such that
V = F−1 (U |X) a.s.

Proof : Appendix.
Similar to (9) we now have that the conditional distribution of the bids

(including the zero bids) is

B|X ∼
µ
F−1(α (X) + (1− α (X))U |X)− 1

U I(X)−1

×
Z F−1(α(X)+(1−α(X))U |X)

p0(X)
F (y|X)I(X)−1dy

!
.D,

where U is uniformly [0, 1] distributed, independently of X, and D = 1(V >
p0(X)). Note that U is independent of D as well, because U was actually
drawn conditionally on X and the event V > p0 (X) . Now by the same
argument as in the case without covariates it follows straightforwardly that
conditional on X, F (v|X) is nonparametrically identified on [p0 (X) ,∞).

3.2 Semi-nonparametric identification

In order to put some structure on F (v|X), we will now assume that
lnV = γ (X) + ε, (13)

where

Assumption 4. The random variable ε in (13) is independent of X, and
its distribution is absolutely continuous with connected support.

The reason for considering this case will be given at the end of this subsection.
To pin down the location of γ (X) we will impose a quantile restriction

on the distribution of ε, for example that the median of ε is zero. Moreover,
to ensure that E[V |X] = exp (γ (X))E [exp (ε)] <∞ we need to require that
E [exp (ε)] <∞:
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Assumption 5. The median of ε in (13) is zero:P (ε ≤ 0) = 1/2, and
E [exp (ε)] <∞.

Thus γ (X) is now the conditional median of lnV.
It follows from (13) that

F (v|X) = P [V ≤ v|X] = P [exp (ε) ≤ v exp (−γ (X)) |X] (14)

= P [exp (− exp (ε)) ≥ exp (−v exp (−γ (X))) |X]
= P [1− exp (− exp (ε)) ≤ 1− exp (−v exp (−γ (X))) |X]
= H (1− exp (−v exp (−γ (X)))) ,

where

H (u) = P [1− exp (− exp (ε)) ≤ u] = P [exp (− exp (ε)) ≥ 1− u]
= P [ε ≤ ln (ln (1/ (1− u)))]

which is a distribution function on (0, 1). Note that H (u) satisfies the quan-
tile restriction

H
³
1− e−1

´
= 1/2. (15)

The question now arises whether γ (X) and H (u) are nonparametrically
identified. It suffices to establish the uniqueness of γ (X) only, because
F (v|X) is nonparametrically identified on [p0 (X) ,∞) , so that given γ (X) ,
H (u) is identified on [1− exp (−p0 (X) exp (−γ (X))) , 1] .
To answer this question, note that Assumption 5 implies that H (u) is

absolutely continuous with connected support, say (u, u) ⊂ [0, 1]. Then it
follows from Lemma 1 thatH is invertible on (u, u) , with inverseH−1. Conse-
quently, it follows from (14) that 1−exp (−v exp (−γ (X))) = H−1 (F (v|X)) ,
hence

v = exp (γ (X)) ln
³
1/
³
1−H−1 (F (v|X))

´´
= exp (γ (X)) ln

³
1/
³
1−H−1 (α (X) + (1− α (X))F (v|X))

´´
,

where the latter follows from (12). Next, let V be a random drawing from
F (v|X) . Then it follows from Lemma 2 that U = F (V |X) is uniformly [0, 1]
distributed, and is independent of X, hence

V = exp (γ (X)) ln
³
1/
³
1−H−1 (α (X) + (1− α (X))U)

´´
13



Suppose there exists an alternative median function γ∗ (X) and an alternative
distribution function H∗ with inverse H−1

∗ for which

V = exp (γ∗ (X)) ln
³
1/
³
1−H−1

∗ (α (X) + (1− α (X))U)
´´

Then for arbitrary u ∈ (0, 1).

exp (γ∗ (X)− γ (X)) =
ln (1/ (1−H−1 (α (X) + (1− α (X))u)))

ln (1/ (1−H−1∗ (α (X) + (1− α (X))u)))

Since the left-hand side of this equation does not depend on u, the derivative
of the right-hand side to u is zero, hence

ln (1−H−1[α(X) + (1− α(X))u])

ln (1−H−1∗ [α(X) + (1− α(X))u])
= C(X),

for example, and thus γ∗ (X) = γ (X) + ln(C(X)). But γ∗ (X) and γ (X) are
both conditional medians of lnV, which is only possible if ln(C(X)) = 0 a.s.:

γ∗ (X) = γ (X) .

This implies that

H∗(u) = H(u) for u ∈ [1− exp(−p0 exp(−γ(x)), 1].
The reason for considering the case (13) is that the distribution func-

tion H(u) can easily be estimated semi-nonparametrically using orthonormal
Legendre polynomials on the unit interval. See Bierens (2006). Given H and
a parametric specification of γ (X) , for example let γ (X) be a linear function
of X, F (v|X) can be determined via (14). Moreover, the conditional median
of the computed function F (v|X) can then be compared with the parametric
specification, on the basis of which a test can be developed for the validity
of the parametric specification of the median function. This is left for future
research.

4 The case where the actual number of bid-
ders is known to the bidders

The nonparametric identification of the first-price auction model with bind-
ing reservation price p0 depends crucially on the assumption that the number
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of potential bidders I is known to the bidders as well as to the econometri-
cian. But usually the econometrician only observes the actual number of bids
I∗.
To get around that problem, assume that, instead of the number of po-

tential bidders I, the actual number of bidders I∗ ≥ 2 is ex-ante known to
all the bidders. Moreover, assume that a binding reservation price p0 is set
in advance by the seller. Then it can be shown6 that the equilibrium bid
function in this case becomes

β (v) = v − 1

F (v)I∗−1

Z v

p0
F (x)I∗−1dx, (16)

where F (v) is defined in (7).
Similarly, in the presence of auction-specific covariates X the conditional

equilibrium bid function becomes

β (v|X) = v − 1

F (v|X)I∗(X)−1
Z v

p0(X)
F (y|X)I∗(X)−1dy

where

F (v|X) = F (v|X)− α(X)

1− α(X)

with
α(X) = F (p0(X)|X) .

We will now set forth conditions under which F (v|X) and α(X) are
identified.
If we use for F (v|X) the semi-nonparametric specification (14) with para-

metrized median function γ (X, θ0) , then

F (v|X) = H (1− exp (−v exp (−γ (X, θ0))))
= 1−H0 (exp (−v exp (−γ (X, θ0))))

where
H0 (u) = 1−H (1− u) ,

so that
α(X) = 1−H0 (exp (−p0(X) exp (−γ (X, θ0)))) .

6See the Appendix.
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Note that H0 (u) satisfies the quantile restriction

H0
³
e−1

´
= 1/2. (17)

Hence

F (v|X) = 1− H0 (exp (−v exp (−γ (X, θ0))))
H0 (exp (−p0(X) exp (−γ (X, θ0)))) , v ≥ p0(X)

Since F (v|X) is nonparametrically identified on [p0(X),∞) , it follows
that for given θ0, H0(u) is identified on [0, exp (−p0(X) exp (−γ (X, θ0)))] .
Now suppose that there exists a parameter vector θ1 6= θ0 and a distrib-

ution function H1 on [0,1] such that

F (v|X) = 1− H1 (exp (−v exp (−γ (X, θ1))))
H1 (exp (−p0(X) exp (−γ (X, θ1)))) , v ≥ p0(X)

Then for all v ≥ p0(X),
H1 (exp (−v exp (−γ (X, θ1))))
H0 (exp (−v exp (−γ (X, θ0)))) =

H1 (exp (−p0(X) exp (−γ (X, θ1))))
H0 (exp (−p0(X) exp (−γ (X, θ0))))

Since the right-hand side does not depend on v, it follows that the deriva-
tive of the left hand side to v > p0(X) is zero, which implies (after some
rearrangements) that

h1 (exp (−v exp (−γ (X, θ1))))
h0 (exp (−v exp (−γ (X, θ0)))) (18)

× exp (−v (exp (−γ (X, θ1))− exp (−γ (X, θ0))))
=
H1 (exp (−v exp (−γ (X, θ1))))
H0 (exp (−v exp (−γ (X, θ0)))) ×

exp (−γ (X, θ0))
exp (−γ (X, θ1))

=
H1 (exp (−p0(X) exp (−γ (X, θ1))))
H0 (exp (−p0(X) exp (−γ (X, θ0)))) ×

exp (−γ (X, θ0))
exp (−γ (X, θ1)) ,

where h1 and h0 are the densities of H1 and H0, respectively.
Next, impose the condition

h1(0) = h0 (0) = 1 (19)
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and take the limit of (18) for v →∞. Then

lim
v→∞ exp (−v (exp (−γ (X, θ1))− exp (−γ (X, θ0))))

=

⎧⎪⎨⎪⎩
∞ if γ (X, θ1) > γ (X, θ0)
0 if γ (X, θ1) < γ (X, θ0)
1 if γ (X, θ1) = γ (X, θ0)

=
H1 (exp (−v exp (−γ (X, θ1))))
H0 (exp (−v exp (−γ (X, θ0)))) ×

exp (−γ (X, θ0))
exp (−γ (X, θ1))

=
H1 (exp (−p0(X) exp (−γ (X, θ1))))
H0 (exp (−p0(X) exp (−γ (X, θ0)))) ×

exp (−γ (X, θ0))
exp (−γ (X, θ1)) .

Clearly, only the option

γ (X, θ1) = γ (X, θ0) (20)

is possible, which implies that

H1(u) = H0 (u) on [0, exp (−p0(X) exp (−γ (X, θ0)))] . (21)

The condition (19) can be implemented similar to the condition h0(1) = 1
in Bierens (2006) and Bierens and Carvalho (2006). Of course, we should
also impose the quantile restriction (17). Moreover, under Assumption 1 in
Bierens and Carvalho (2006), (21) implies that H1(u) = H0 (u) on [0, 1] , so
that H0 (u) is identified on [0, 1]. Finally, we need some obvious regularity
conditions on the distribution of X and the functional form of γ (x, θ) such
that (20) implies θ1 = θ0.

5 Concluding remarks
In this paper we have proved the non-parametric and semi-nonparametric
identification of various first-price auction models, with and without binding
reservation price, without using the usual condition that the value distri-
bution has known bounded support. These results, in particular the re-
sults in Sections 3.2 and 4, are the basic for our further research on semi-
nonparametric estimation of these models via semi-nonparametric modeling
of density and distribution functions on the unit interval, along the lines
in Bierens (2006) and Bierens and Carvalho (2006). See also Chen (2006)
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for a review of semi-nonparametric modeling and estimation. In particu-
lar, we will propose to estimate these models semi-nonparametrically via a
simulated integrated conditional moment criterion, similar to the integrated
conditional moment test statistic proposed by Bierens (1982) and Bierens and
Ploberger (1997). In our case the moment function is the difference between
the empirical characteristic functions of the observed bids and the empirical
characteristic function of the corresponding simulated bids generated by the
equilibrium bid function for a semi-nonparametric specification of the value
distribution.
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6 Appendix

6.1 Proof of Lemma 2

Let (v (X) , v (X)) (or its closure) be the support of F (.|X). Since F (v|X) is
strictly monotonic increasing on (v (X) , v (X)) , it is invertible: For each x in
the support of X and each u ∈ (0, 1) there exists a unique v ∈ (v (x) , v (x))
such that F (v|x) = u, hence there exists a conditional distribution function
F−1 (u|x) on [0, 1] such that F (v|x) = u ∈ (0, 1) implies v = F−1 (u|x) ∈
(v (x) , v (x)) . Then

P [U ≤ u|X] = P [F (V |X) ≤ u|X] = P
h
V ≤ F−1 (u|X) |X

i
= F (F−1 (u|X) |X) = u.

Since the right-hand side does not depend on X, U and X are independent,
and therefore P [U ≤ u] = u.

6.2 Proof of (16)

Let β (v) be the strictly monotonic increasing equilibrium bid function in-
volved, and let b be the bid of bidder 1, which corresponds to an x such
that b = β(x). Given the value V1 = v of bidder 1, the expected value for
bidder 1 of the object to be auctioned off is v times the probability that he
wins the object. The latter is the case if his bid β (x) is the highest bid,
which by the monotonicity of β (v) is the case if x > V 2 = max {V2, ..., VI∗} .
The probability of this event, conditional on V 2 = min {V2, ..., VI∗} > p0, is
G(x) = F (x)I∗−1, where F (x) is defined by (7), hence the expected value is
vG(x).
Given the bid b = β(x), let p(x) be the expected price to pay to the

seller. At this point we do not assume yet that p(x) equals β(x) times the
probability of winning the auction. Then the expected net gain for bidder 1
is π (v, x) = vG(x)− p(x), which is maximal if x is chosen such that

0 = ∂π (v, x) /∂x = vG0(x)− p0(x) (22)

In order that the bid b = β(x) is an equilibrium bid, the solution of (22)
must be x = v, hence

p0(v) = vG0(v). (23)
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Using the conditions G0(v) = 0, π (v, v) = 0 for v < p0, and p(v) = 0 at
v = p0, the solution of the differential equation (23) is p(v) =

R v
p0
xG0(x)dx =

vG(v)− R vp0 G(x)dx. For the equilibrium bid function β (v) , p(v) is equal to
β (v) times the probability G(v) of winning the auction: p(v) = β (v)G(v) =
vG(v)− R vp0 G(x)dx, hence

β (v) = v − 1

G(v)

Z v

p0
G(x)dx = v − 1

F (v)I∗−1

Z v

p0
F (x)I∗−1dx.
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